Brief Revision Notes and Strategies

Straight Line	
Distance Formula	$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ d is distance between $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Mid-point formula	$M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ M is midpoint of $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Equation of a straight line	$y=m x+c \quad \frac{y-y_{1}}{x-x_{1}}=m \quad y-a=m(x-b)$
Equation of a straight line parallel to a line and through a point: e.g. parallel to $2 y+3 x=1$ through $(4,5)$	extract gradient $\quad y=-\frac{3}{2} x+\frac{1}{2} \quad m=-\frac{3}{2}$ Use $\frac{y-y_{1}}{x-x_{1}}=m$ with $m=-\frac{3}{2}$ and $(4,5)$
Equation of a straight line perpendicular to a line and through a point: e.g. perpendicular to $2 y+3 x=1$ through (4, 5)	extract gradient: $\quad m=-\frac{3}{2} \quad$ use $\quad m_{2}=-\frac{1}{m_{1}}$ so $m=\frac{2}{3}$ use: $\frac{y-y_{1}}{x-x_{1}}=m$ with $m=\frac{2}{3}$ and $(4,5)$
Equation of a perpendicular bisector	Find mid-point of line, Find gradient of line, Find perpendicular gradient Find equation - using gradient and mid-point
Equation of a median	The median of a triangle is the line from a vertex (corner) to the mid-point of the opposite side.
Equation of an altitude	The altitude of a triangle is the line from a vertex (corner) perpendicular to the opposite side.
Equation of a line parallel to x or y axis	Lines parallel to x axis are of form: $\mathrm{y}=3$ Lines parallel to y -axis are of form: $\mathrm{x}=2$
Find point of intersection of two straight lines	Solve equations of two lines simultaneously
Finding angle a line makes with x - axis	Use $\mathrm{m}=\tan \theta$
Find angle between two lines	$\mathrm{m}=\tan \theta$; draw triangles - sum of angles $=180^{\circ}$

Functions and Graphs	
$\begin{aligned} & \text { Composite functions }-f(g(x)) \text { and } g(f(x)) \\ & \text { e.g. } \quad f(x)=\sin x \\ & \\ & g(x)=3 x \end{aligned}$	Write: $\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(3 \mathrm{x})=\sin 3 \mathrm{x}$ and $\quad g(f(x))=g(\sin x)=3 \sin x$ Make sure you get them the right way round.
Simplify a composite function using algebraic fractions or rules of surds. e.g. $\quad f(x)=2-x$ and $g(x)=\frac{2}{x}$ find $p(x)$ where $p(x)=f(g(x))$ if $q(x)=\frac{2}{2-x}$, find $p(q(x))$ in its simplest form	$\begin{aligned} & p(x)=f(g(x))=f\left(\frac{2}{x}\right)=2-\frac{2}{x} \\ & p(q(x))=p\left(\frac{2}{2-x}\right)=2-\frac{2}{\frac{2}{2-x}} \\ & =2-2 \times \frac{2-x}{2}=2-(2-x)=2-2+x=x \end{aligned}$
Given a function find graph of related function	$\begin{array}{ll} y=-f(x) & \text { reflects graph in } x \text {-axis } \\ y=f(-x) & \text { reflects graph in } y \text {-axis } \\ y=f(x+a) & \text { moves graph } a \text { units to left } \\ y=f(x-a) & \text { moves graph } a \text { units to right } \\ y=f(x)+a & \text { moves graph } a \text { units up } \\ y=f(x)-a & \text { moves graph } a \text { units down } \end{array}$ More than one operation can take place e.g. $y=f(x-4)+3$ move 4 units to right and move 3 up $y=6-f(x) \quad$ reflect in x-axis and then move 6 up It is helpful to consider one transformation at a time and build up the sketch of the graph in stages.
Sketch graph of derived function	Derived function graph shows where the gradient of the function is zero. Stationary points of function are marked on x -axis of derived function graph. Look at gradient on either side of this zero to determine whether the derived function should be positive (above axis) or negative (below the axis)
Finding an inverse: $\text { eg } f(x)=5 x-1 \text { find } f^{-1}(x)$	Use $y=f(x)$ and change subject of the formula. $y=5 x-1 \quad \rightarrow \quad y+1=5 x \quad \rightarrow \quad x=\frac{1}{5}(y+1)$ Switch variables x and y; put back in function notation. $y=\frac{1}{5}(x+1) \quad \rightarrow \quad f^{-1}(x)=\frac{1}{5}(x+1)$

Functions - Quadratic

Completing the square
Ex 1. $x^{2}-8 x+3$

Ex 2. $2 x^{2}+8 x-1$

Ex 3. $3+6 x-x^{2}$

Using for max or min and value of x for which it occurs

NB: Coefficient of x^{2} must be positive and 1

1. $x^{2}-8 x+3 \rightarrow(x-4)^{2}-16+3 \rightarrow(x-4)^{2}-13$
2.

$$
2 x^{2}+8 x-1 \rightarrow 2\left(x^{2}+4 x\right)-1 \rightarrow
$$

$$
\rightarrow 2\left\{(x+2)^{2}-4\right\}-1 \quad \rightarrow 2(x+2)^{2}-9
$$

3.

$$
3+6 x-x^{2} \rightarrow-\left(x^{2}-6 x\right)+3 \rightarrow
$$

$$
\rightarrow-\left\{(x-3)^{2}-9\right\}+3 \rightarrow 12-(x-3)^{2}
$$

Since the squared term can only be positive, look for when the squared term is zero.
Using the above examples:
$(x-4)^{2}-13$ has a minimum of -13 at $\mathrm{x}=4$
$2(x+2)^{2}-9$ has a minimum of -9 at $\mathrm{x}=-2$
$12-(x-3)^{2}$ has a maximum of 12 at $\mathrm{x}=3$

If you are given two roots of a parabola
i.e. where it crosses the x-axis

- e.g. $x=a$ and $x=b$
then the equation will be given by:

$$
y=k(x-a)(x-b)
$$

k is a constant to be determined by another point.
Substitute another point into the equation to find k.

Equation of a quadratic is: $a x^{2}+b x+c=0$
$b^{2}-4 a c=0 \quad$ equation has equal roots
$b^{2}-4 a c>0$ equation has real and distinct roots
$b^{2}-4 a c<0 \quad$ equation has no real roots.
Form an equation involving k using the discriminant and solve to find a value for k.

Use discriminant to form an expression involving k.
Investigate ranges for k for which the expression is positive or negative as required.

Functions - Polynomials	
Remainder Theorem	When $f(x)$ is divided by $(x-h)$, the remainder is $f(h)$
Factor Theorem	If $f(x)$ is a polynomial, then, $f(h)=0 \Leftrightarrow(x-h) \text { is a factor }$
Synthetic Division	Use for dividing a polynomial by $(x-a)$ Write down coefficients of polynomial e.g. divide: $2 x^{3}-x^{2}-3 x-5$ by $x-2$ When dividing by $(x-2)$ use 2 as the divisor When dividing by $(x+3)$ use -3 as the divisor
Given a factor find a value of k	Use synthetic division and obtain an expression for the remainder in terms of k. Put this expression equal to zero and solve for k.
Given a factor solve a cubic equation	Use synthetic division to obtain the quotient. Factorise the quadratic quotient to obtain 3 roots.
Factorise a cubic - given clues from a graph	Cubic has a factor, where the graph crosses the x -axis. Use this factor in synthetic division to find quotient. Factorise quotient to obtain 3 roots.
Solve a cubic equation with no clues	Look at constant term; use factors of it to find a factor of the polynomial. e.g. if constant is 6 , try division with $\pm 1, \pm 2, \pm 3, \pm 6$ or find h such that $f(h)=0$ using $h= \pm 1, \pm 2, \pm 3, \pm 6$ find quotient using synthetic division, and factorise it.
Find intersection of a line and a curve	Solve equations simultaneously. Will give rise to a quadratic or cubic
Deduce from a graph value of k for which $f(x)=k$ has 3 real roots, no real roots, etc. Deduce a solution for a quadratic inequality	Consider where the graph needs to be to cross the x axis at 3 points, no points etc. Look at graph and determine values of x that will satisfy the inequality.

Logarithms and Exponential Functions	
Using log and exponential graphs to determine co-ordinates	Use knowledge of special logarithms: $\log _{a} 1=0 \quad \log _{a} a=1 \quad y=a^{x} \quad \Leftrightarrow \quad \log _{a} y=x$
Using log and exponential graphs to determine constants in equations	Use knowledge of special logarithms: $\log _{a} 1=0 \quad \log _{a} a=1 \quad y=a^{x} \quad \Leftrightarrow \quad \log _{a} y=x$ Look also for powers. e.g. $\quad 8=2^{3}$

Sequences and Recurrence Relations	
Form a recurrence relation	Always write down the recurrence relationship in the form $U_{n+1}=m U_{n}+c$ Note: m is the proportion remaining.
Limit formula	$L=\frac{c}{1-m} \quad \text { providing }-1<m<\mathbf{1}$ 1. Check that the condition $\mathbf{- 1}<\boldsymbol{m}<\mathbf{1}$ is true 2. State it.
Use the limit and interpret	The limit is the value to which the sequence will tend, in the long term. Unless you know the initial conditions, you cannot say whether the long term value is a rise or fall. State: "In the long term," ... "will settle out at around" .. If you know the initial value, you may deduce whether the long term value will be a decrease or an increase.
Use the limit and find the multiplier and interpret	You may be given a limit and asked to work back to find m and interpret this in the context of the question. Use the formula, find m, then interpret. m is what remains, so $1-m$ is the interpretation.
Calculating terms of a recurrence relation e.g. loans, HP repayments, Bank Interest, charges	When dealing with loans and HP it is necessary to calculate each term of the sequence, to find when the loan terminates, final payment etc.
Finding limit of a sequence as n tends to infinity e.g. What is limit of sequence as $n \rightarrow \infty$	Re-arrange into a form where the term involving n tends to zero as $\mathrm{n} \rightarrow \infty$ $\begin{aligned} & U_{n}=\frac{2 n+1}{n} \rightarrow \frac{2 n}{n}+\frac{1}{n} \rightarrow 2+\frac{1}{n} \\ & \rightarrow \lim _{n \rightarrow \infty} 2+\frac{1}{n}=2 \text { as } \lim _{n \rightarrow \infty} \frac{1}{n}=0 \end{aligned}$

Find co-ordinates of a point on a curve where tangent makes a specified angle with x -axis	Using $\mathrm{m}=\tan \theta$ find a value for gradient Differentiate the equation to get gradient function. Equate the value of m to the gradient function. Solve equation to find x co-ordinates Substitute back into equation to find y co-ordinates. State co-ordinates of the point.
Velocity \& acceleration - find acceleration equation from velocity equation	Differentiate velocity to get acceleration. $a=\frac{d v}{d t}$ Evaluate at given value of t for acceleration.
Distance \& velocity - find velocity equation from distance equation	Differentiate distance to get velocity. $v=\frac{d s}{d t} \quad \text { or } \quad v=\frac{d x}{d t} \quad \text { or } \quad v=\frac{d h}{d t}$ Evaluate at given value of t for velocity.
Using height and velocity	Greatest height is when velocity $=0$
Optimisation problem Find value of x that makes function max or \min e.g. Find max or min surface area, volume, profit etc.	This is really a stationary point question 1. Find a constraint (if required) 2. Differentiate the function 3. For a SP $f^{\prime}(x)=0$ 4. Solve the equation for to find x 5. Show that it is a max or min as required. 6. Find other variables in question if required. 7. Interpret the solution

Calculate area between two curves or between a straight line and a curve	Find limits of integration if not given. Use simultaneous equations. Area $=\int$ upper curve $-\int$ lower curve dx Simplify the expression before integrating Integrate as a definite integral. Evaluate for area. Do not need to make allowance for area below x-axis, it takes care of itself automatically.
Using a derivative to assist in integrating an unfamiliar function	Differentiate a similar function (given) Look at any difference from function to be integrated. Deduce original function by use of constants.
Velocity \& acceleration - find velocity equation from acceleration equation	Integrate acceleration to get velocity. $a=\frac{d v}{d t} \quad \text { so } \quad v=\int a d t \quad \rightarrow \quad v=\int \frac{d v}{d t} d t$ Evaluate at given value of t for velocity or to find constant of integration.
Distance \& velocity - find distance equation from velocity equation	Integrate velocity to get distance (s). $v=\frac{d s}{d t} \quad \text { so } \quad s=\int v d t \quad \rightarrow \quad s=\int \frac{d s}{d t} d t$ Evaluate at given value of t for distance or to find constant of integration.

Trigonometry

Using exact values Compound angles, Double angles, Right angle triangles Find $\sin (p+q)$ etc	Use Pythagoras to determine hypotenuse Write down $\sin p=\ldots . \cos p=\ldots$. etc, Write down the appropriate formula USE THE FORMULA SHEET ! Substitute values and simplify.
Solve a trig equation Using common factor	Ex. $\quad \sin 2 \mathrm{x}-\sin \mathrm{x}=0$ Replace $\sin 2 x$ with $2 \sin x \cos x$ $2 \sin \mathrm{x} \cos \mathrm{x}-\sin \mathrm{x}=0$ $\sin x(2 \cos x-1)=0$ No constant term \rightarrow it is always common factor
Solve a trig equation Factorising a quadratic in $\cos \mathrm{x}$ or $\sin \mathrm{x}$	Ex. $\quad \cos 2 \mathrm{x}-\sin \mathrm{x}=\mathbf{0}$ Replace $\cos 2 x$ with $1-2 \sin ^{2} x$ $\begin{aligned} & 1-2 \sin ^{2} x-\sin x=0 \\ & 2 \sin ^{2} x+\sin x-1=0 \\ & (2 \sin x-1)(\sin x+1)=0 \end{aligned}$ Constant term \rightarrow it is always two brackets
When replacing with $2 \cos ^{2} x-1$ or $1-2 \sin ^{2} x$ use brackets. NEVER divide by $\cos x$ or $\sin x$ in a quadratic or common factor equation.	

Solving Trigonometric Equations	
Equations with or $\sin 2 x$ and $\sin x$ $\sin 2 x$ and $\cos x$	Replace $\sin 2 \mathrm{x}$ with $2 \sin \mathrm{x} \cos \mathrm{x}$ Then factorise - common factor
Equations with $\boldsymbol{\operatorname { c o s }} 2 \mathrm{x}$ and $\boldsymbol{\operatorname { s i n }} \mathrm{x}$	Replace $\quad \cos 2 \mathrm{x}$ with $1-2 \sin ^{2} \mathrm{x}$
Equations with $\cos 2 \mathrm{x}$ and $\cos \mathrm{x}$	Replace $\quad \cos 2 \mathrm{x}$ with $2 \cos ^{2} \mathrm{x}-1$
Equations with $\cos ^{2} \mathbf{x}$ and $\cos \mathbf{x}$ or $\quad \sin ^{2} \mathbf{x}$ and $\boldsymbol{\operatorname { s i n }} \mathbf{x}$	If there is a constant term - factorise $(\ldots .).(\ldots \ldots)$ If no constant term, then common factor
Equations with $\cos ^{2} \mathbf{x}$ and $\boldsymbol{\operatorname { s i n }} \mathbf{x}$ or $\quad \sin ^{2} \mathbf{x}$ and $\boldsymbol{\operatorname { c o s }} \mathbf{x}$	Replace $\cos ^{2} x$ with $1-\sin ^{2} x$ Replace $\sin ^{2} \mathrm{x}$ with $1-\cos ^{2} \mathrm{x}$
Equations with $\cos ^{2} \mathbf{x}$ only or $\quad \sin ^{2} \mathbf{x}$ only	Re-arrange $\rightarrow \cos ^{2} x=\ldots$ take square root. Re-arrange $\rightarrow \sin ^{2} x=\ldots$ take square root Remember $\pm \sqrt{ }$ there will be 4 solutions
Equations with $\cos 2 x$ only or $\quad \sin 2 \mathrm{x}$ only	Re-arrange $\rightarrow \cos 2 \mathrm{x}=\ldots$ Find 2 values for 2 x Re-arrange $\rightarrow \sin 2 \mathrm{x}=\ldots$ Find 2 values for 2 x Do not forget extended domain. $0 \leq \mathrm{x} \leq 360^{\circ}$ becomes $0 \leq 2 \mathrm{x} \leq 720^{\circ}$
Equations of type $\mathbf{R} \boldsymbol{\operatorname { c o s }}(\mathbf{x}-\mathbf{a})$	Solve to find two angles for $(\mathrm{x}-\mathrm{a})$ Then solve these to find values for x .
Equations with $\mathbf{a} \cos \mathbf{x}+\mathbf{b} \sin \mathbf{x}=\mathbf{0}$	Divide by $\cos \mathrm{x}$ to get: $\quad \tan x=-\frac{a}{b}$ Solve as a basic equation

